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We treat the problem of combined buoyancy-thermocapillary convection in a cavity 
with a free surface heated differentially in the horizontal. Attention is focused on the 
structure and strength of the flow for large AT, i.e. large Marangoni and Rayleigh 
numbers. In  the combined problem, the boundary-layer scalings for buoyant and 
thermocapillary convection suggest that  in the limit of large AT, thermocapillarity 
will dominate the large-scale flow. Accurate numerical solutions are used to study 
this question at fixed cavity aspect ratio and Prandtl number, with G = Ra/Ma as 
a parameter. For G = 1,  the flow evolves toward its boundary-layer limit in a fashion 
identical to that for G = 0, i.e. pure thermocapillary flow. For G = 10, the evolution 
is from a buoyancy-dominated structure, through a transition, to a thermocapillary- 
dominated structure. We infer that thermocapillarity will ultimately dominate all 
such flows a t  sufficiently large AT, for any fixed values of G ,  the aspect ratio, and the 
Prandtl number. 

1. Introduction 
A non-uniform temperature field within a pure liquid bounded in part by a free 

surface produces two different sources of fluid motion, buoyancy and thermo- 
capillarity. The flows associated with these two mechanisms considered in- 
dependently have been extensively examined, the study of buoyancy-driven flow in 
cavities having an immense historical record. I n  this work we shall be concerned with 
the flow in a two-dimensional square cavity ; buoyancy-driven flow in this geometry 
has been the subject of a comparison study to which over thirty groups contributed 
numerical solutions (de Vahl Davis & Jones 1983; de Vahl Davis 1983). The 
literature of thermocapillary flow is more recent and has been motivated primarily 
by the concerns of materials processing technology in microgravity. A numerical 
study important for its large parameter space is that of Fu & Ostrach (1983). The 
problem of the flow with combined mechanisms, however, has not been sys- 
tematically investigated and is currently without a substantial theoreticaI basis, 
though preliminary numerical results by Bergman and coworkers (Bergman & 
Ramadhyani 1986 ; Bergman & Keller 1988) have established that thermocapillarity 
can be a significant influence in thermally driven cavity flows, particularly when 
thermocapillary stress acts to oppose the bulk circulation due to buoyancy. 
Experimental investigations of the combined flow have relied on dimensional 
estimates of the relative influence of the two mechanisms, estimates obtained by 
consideration of the parameters defining the flow: a fluid density p, a volumetric 
coefficient of thermal expansion p, gravity g, a length characteristic of the body L, 
the surface-tension thermal coefficient crT, a temperature difference AT, the dynamic 
viscosity p, and the kinemat,ic viscosity u. Schwabe & Scharmann (1979) obtain the 
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FIGURE 1 .  Thermally driven flow in a two-dimensional cavity. The upper surface is free and 
thermally insulated, the lower rigid and insulated. 

group p/3gLz/aT from a comparison of viscous scalings of thermocapillary and 
buoyancy effects. A characteristic ' thermocapillary velocity ', U,,, is obtained from 
the tangential stress balance, which requires pU,,/L N aT AT/L, and a "buoyancy 
velocity' u,, is given by the balance between viscous and buoyancy terms in the 
momentum equation, p/3g AT N pU,,/L2. Schwabe & Scharmann's group then 
expresses the ratio Ub/Ut,. In  this analysis, the lengthscale presumed appropriate to 
viscous stresses is L ,  the body lengthscale, and the analysis therefore cannot be valid 
in flows of boundary-layer character. Kamotani, Ostrach & Vargas (1984) use 

i.e. the Grashof number over the square of a surface-tension Reynolds number, to 
scale the influence of buoyancy to that of thermocapillarity. The group of Kamotani 
et al. represents the ratio of the square of a buoyancy velocity obtained by equating 
inertial terms in the momentum equation to the buoyancy term (Vb/L N BgAT) to 
the square of the thermocapillary velocity obtained by Schwabe & Scharmann. The 
group of Schwabe %J Sharmann suggests that buoyancy and thermocapillarity should 
be of comparable influence on Earth in fluid bodies having a characteristic length on 
the order of a centimeter, independent of the forcing thermal conditions ; the scale of 
Kamotani et al. on the other hand, predicts that the influence of buoyancy will 
diminish relative to that of thermocapillarity as A T 1 .  Though scaling estimates like 
those of Schwabe & Scharmann or Kamotani et al. may be adequate to characterize 
an experimentally observed flow, it is difficult to apply such estimates to convection- 
dominated flows with a high degree of confidence in the absence of a closer 
examination of the boundary-layer regime of the combined flow. 

Our aim in this paper is to begin the development of a theoretical understanding 
of flow driven by the combined mechanisms of buoyancy and thermocapillarity for 
non-trivial Marangoni and Rayleigh numbers by examining a problem in which the 
boundary-layer structure of the flow due to each individually is well understood. This 
problem, sketched in figure 1, is the thermally driven flow in a fluid of Prandtl 
number of order unity in a square cavity with heated sidewalls. We consider a two- 
dimensional cavity of width L ,  filled to a height y = L with a Boussinesq liquid. The 
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thermal conditions imposed on this cavity are: at x = 0, T = TH; a t  x = 1, T = Tc; 
the upper and lower boundaries of the fluid are insulated. We take gravity to act in 
the - y direction, and assume the contact lines of the free surface to be pinned on the 
vertical walls a t  y = L. Our problem is made dimensionless by reference to the 
following scaled variables : 

where the asterisked terms are dimensional variables. 
Introduction of these quantities produces the following set of equations : 

Re (uu,+vu,) = -p,+V2u, Re (uv,+vv,) = GT-py+V2v,  (1% b)  

U,+V, = 0, 

Ma(uT,+vT,) = V 2 T ,  

h(0) = h(1) = 1 ;  r2-’h(x’)dx’ = 1 
J X=O 

We have the Navier-Stokes equations ( l ) ,  the continuity equation (2), the heat 
equation (3), and appropriate boundary conditions on the three rigid boundaries (4), 
(5 ) ,  (6 ) .  On the free surface we have a kinematic condition (7a) ,  an insulating thermal 
condition (7b) ,  normal and tangential stress balances (7c) and (7d f respectively), and 
the additional requirements on h expressed in (8). The parameters in these equations 
are the Reynolds number, the Marangoni number, the capillary number, and a 
parameter reflecting the magnitude of the buoyant term relative to thermo- 
capillarity ; they are defined as : 

Re = (TH-Tc)uTL;  Ha = (TH-Tc)uTL =Repr;  Ca = (TH - T C )  G = - .  PgL2 
P V  P K  U O  UT 

(9a-d) 

In  this work we shall assume that Pr = 1; so Re =Ma.  The scale of buoyancy 
introduced here as G is identical to the parameter introduced by Schwabe & 
Scharmann (1979) to scale buoyancy effects. It is defined by them as a Bond number, 
but we have chosen an alternative name in order to  avoid confusion with the many 
existing definitions of the Bond number. As noted previously, G describes the ratio 
of buoyant forces acting in the bulk to thermocapillarity acting on the free surface 
when the viscous lengthscale is L. The surface-tension Reynolds number and the 
Grashof number are related by Gr = GRe. The Marangoni and Rayleigh numbers are 
similarly related: R a  = GMa. 

5 FLM 207 
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With the assumption of vanishing capillary number, the location of the free 
surface has the simple solution h = 1, and the boundary conditions (7)  simplify to 

giving equations (1)-(6) and (lo), the leading-order problem in a small-capillary- 
number expansion of the free-surface problem, as our system to be solved. For 
further discussion of this approximation, see Zebib, Homsy & Meiburg (1985). 

2. Scaling considerations 
The theory for buoyancy-driven flow in the boundary-layer regime in this 

situation is due to Gill (1966), which may be summarized for our purposes as follows. 
As Gr, the Grashof number (,8gATL3/v2), becomes large, flow in the cavity is driven 
by a temperature gradient of O(AT) across boundary layers adjacent to the hot and 
cold walls of the cavity. A balance of terms in these layers requires the layer 
thickness 8, to be O(LGr-$) and the velocity U,, to be O((,8gATL2/v)Gr-i); the 
characteristic velocity therefore grows as ATS. Referred to the scales of equations 
(1)-(8), the dimensionless velocity scales with GiRe-t. In  the central or core region of 
the cavity, the temperature depends only on the vertical coordinate, i.e. the 
isotherms are horizontally stratified, as are the streamlines of the core flow. As 
explained by Gill, this stratification is necessary to allow the buoyancy layers to both 
entrain and detrain fluid. From a knowledge of the scales for the thickness and 
velocity of the buoyancy layers, we may estimate the heat transfer in the cavity from 
the heat convected in the layers, proportional to U, 8,. When velocities are scaled to 
/3gATL2/v and lengths to L ,  the dimensionless heat transfer across the cavity, or 
Nusselt number, of the buoyancy problem is proportional to Gri. 

Thermocapillary flow in a square cavity has been studied numerically by Zebib 
et al. (1985), and by Carpenter & Homsy (1988). They find the flow a t  large Reynolds 
number (rT ATL/,uv) to be driven by an O(AT) temperature gradient along the free 
surface, a balance of terms in the surface layer then requiring that the characteristic 
velocity, U,,, and the scale of the surface-layer thickness, S,,, satisfy ,uU,,/S,, - 
ATa,/L, from the tangential stress balance, and l&/L - vU,,/S*, from the 
momentum equation. These two relations give the surface-layer thickness pro- 
portional to L Re-: and a characteristic velocity proportional to ( ( T ~  AT/,u) R e f ,  
yielding a characteristic velocity temperature dependence of AT:, or in the 
dimensionless variables of equations (1)-(8), the velocity is proportional to Re-;. The 
Nusselt number of the thermocapillary problem, estimated from the heat convected 
in the surface layer as Nu - Re Pr SU,, T ,  is proportional to Re;. 

Though the scalings of the thermocapillary and buoyancy layers are derived from 
purely local considerations, the scalings of the two layers cannot be simultaneously 
valid in a flow driven by the combined mechanisms, a consequence of the unequal 
orders of the two flows. The O(Re-i) surface velocity of the thermocapillary flow 
creates a ‘driven cavity pattern’ of flow near the rigid walls of the cavity, i.e. O(1) 
regions of separated flow in the two lower corners and in the upper left corner 
(adjacent to the hot wall), and O(Re-i) boundary layers elsewhere on the walls. In the 
O(Re-g) boundary layers adjacent to  the vertical walls, the leading terms in the y- 
momentum equation are O(Re$, while the buoyancy term is o( l) ,  given G fixed. If, 
therefore, thermocapillarity is sufficiently strong to establish an O(Red) core flow, 
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the influence of buoyancy in these layers will be negligible in a first approximation. 
The question of which mechanism will dominate the flow in the cavity a t  large 
Reynolds number may be examined in the following way. If we consider a problem 
in which thermocapillarity is presumed to be weak, introducing the small parameter 
E = 1/G: we rescale our equations to obtain 

Gr(uv,+vv,) = T-p,+V2v, (11) 

(12) 

u o y  = - E T O , ,  (13) 

Gr Pr (uT, + vT,) = V2T, 

as y-momentum, heat, and tangential stress balances (the rest of (1)-( 10) remaining 
unchanged). Seeking a solution for small 8 of the form u = uo+eu +O(e2) ,  the 
leading-order problem is simple buoyancy-driven flow, with uo - Gr-?. At O(s)  we 
require that the tangential stress balance be satisfied, and that inertial and viscous 
terms be of equal order in a layer of thickness S near the free surface. These two 
requirements give with the result 6, u, - Gr-f. The expansion for u is therefore u - 
Gr-iu;; + E Gr-fu;, the barred variables representing appropriately scaled O( 1)  
quantities. This expansion breaks down when E - Gr-f. We may therefore expect the 
neglect of thermocapillarity to be invalid a t  sufficiently large Gr, with the 
consequence that the flow here cannot follow the scales of buoyancy-driven 
convection. When G is on the order of unity, buoyant and thermocapillary terms in 
(1  b) and ( l o b )  are of equal order. Under the assumption that the dimensionless free- 
surface temperature gradient remains O( 1)  as Re + 00, the surface velocity (and hence 
the core velocities) must be O(Red) in magnitude, with the result, as discussed 
previously, that  the buoyancy term in the thermal boundary layers adjacent to the 
sidewalls is of O(Re-f) relative to the leading terms in the boundary-layer momentum 
equation ; buoyancy effects must therefore be negligible at large Reynolds number, 
a conclusion obviously also valid for small G. This leads to the surprising expectation 
that a t  large AT, the global structure of the flow will be that appropriate to the 
surface mechanism. 

Our purpose, then, is to examine the thermally driven flow in a square cavity a t  
large AT, and to describe the large-AT limit in the light of the preceding hypothesis. 
We will find that our numerical solutions uphold the hypothesis : under sufficiently 
large thermal driving forces, the character of the solutions with regard to core scaling 
and structure is essentially independent of the parameter G, i.e. the large-scale 
features of the flow tend toward the predictions of the thermocapillary theory as the 
influence of buoyancy is confined to thin regions near the vertical surfaces of the 
cavity. 

2 

3. Numerical solution 
Numerical solution of this problem is made more convenient computationally by 

the introduction of a stream function Y ((u, v) = ( Y,, - Y,)), reducing the number of 
unknowns to two, Y and T. We apply conventional finite differencing to the 
equations for Y and T, approximating derivatives with centred differences in a 
consistent second-order-accurate manner. Our solution of the discrete equations 
follows the approach of Schreiber & Keller (1983), mixing Newton and chord steps 
to achieve computational economy. Parameter continuation is employed to obtain 

5-2 
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5 =  

Grid 
64x64 
74 x 74 
84 x 84 

Grid 
64x64 
74 x 74 
84 x 84 

y = 0.95 

0.07 0.17 0.52 0.87 0.95 

Temperature 
0.143 0.00815 -0.0704 -0.0182 0.0254 
0.143 0.00902 -0.0714 -0.0194 0.0240 
0.137 0.00375 -0.0732 - 0.02 16 0.0208 

-6.58 x - 1.70 x -4.58 x -4.16 x -2.41 x 
-6.60 x - 1.71 x -4.58 x loT4 -4.15 x -2.40 X 

-6.91 x -1.77 x -4.61 x -4.14 x -2.37 x lo-' 

x = 0.52 

Stream function 

Y =  0.07 0.17 0.52 0.87 0.95 

Grid Temperature 
64 x 64 -0.211 -0.0816 -0.0856 -0.0893 -0.0704 
74x74 -0.211 -0.0821 -0.0873 -0.0910 - 0.07 14 
84x84 -0.212 -0.0845 -0.0891 -0.0928 -0.0732 

Grid Stream function 
64 x 64 - 1.48 x lo-' -6.27 x - 1.67 x -9.36 x -4.58 x 

84 x 84 -1.48 x -6.27 x -1.68 x -9.44 x -4.61 x 
74 x 74 - 1.51 x 10-4 -6.39 x 10-4 -1.67 x 10-3 -9.37 x 10-4 -4.58 x 10-4 

TABLE 1. Solution values a t  selected points as obtained on three different meshes, for the case 
G = 0, Re = 1 x lo6. 

initial approximations to  the solution at increasing Reynolds number ; with this 
technique it is possible to advance the Reynolds number in increments ranging from 
500 at Re = 0, to 5000 at Re = 50000, and obtain a converged solution (pointwise 
residual scaled to the solution less than lo-') in typically fewer than three Newton 
steps and twenty chord steps. Our results are obtained on 64 x 64 and 74 x 74 non- 
uniform meshes, giving systems of 7812 and 10512 equations. The meshes are graded 
toward the free surface and the vertical boundaries, with smallest spacings of 
approximately 0.006 in the upper corners of the cavity. As the thickness of the 
buoyancy layers as well as that of the surface layer is on the order of 0.1, the mesh 
spacing is small in comparison with dynamically important scales. The San Diego 
Supercomputer Center Cray X/MP-48 on which our work was performed required 
approximately three minutes of CPU time to compute an LU decomposition and 
fifteen seconds to complete a backsolve on the 74 x 74 system, using single precision 
LINPACK band mode routines modified to operate with out-of-core matrix storage, 
while retaining column pivoting. Representative data from a modest mesh refinement 
a t  G = 0, Re = 1 x lo5, from 64 x 64 to  84 x 84, given in table 1, show that the 
variation of the stream function and temperature at various points on the domain, 
relative to the maximum magnitudes of these variables, is generally less than 1 YO, 
i.e. the two solutions agree to within two significant figures, when significance is 
(appropriately) determined by the maximum magnitude of the variable within the 
domain. Some of the characteristics of our solutions at G = 1 and G = 10 are given 
in table 2. In  this table Ymin is the minimum value of the stream function within the 
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G = l  

Re Grid - Ug,, %ore u(O.5,l) Nu,_, Nu,-, 
5.0 x loa 64 x 64 3.84 x -8.92 x lo-' 3.74 x lo-' 3.57 3.54 3.54 

10.0 x lo3 64 x 64 3.26 x -6.73 x 3.09 x lo-' 3.39 3.36 3.35 
20.0 x lo3 74 x 74 2.94 x -5.74 x lo-' 2.74 x lo-* 5.57 5.63 5.50 
30.0 x lo3 74 x 74 2.94 x -5.74 x lo-' 2.74 x lo-' 6.30 6.36 6.25 

50.0 x lo3 74 x 74 2.94 x -5.74 x lo-' 2.74 x lo-' 7.29 7.40 7.33 

G = 10 

40.0 x 10' 74 x 74 2.94 x lo-' -5.74 X 2.74 x lo-' 6.85 6.93 6.84 

Re Grid - ~ m i n  ~ c o * e  u(0.5,l) Nu,_, Nu,_, Nu,_,., 
4.0 x lo3 64 x 64 3.71 x -5.47 x lo-' 3.82 x lo-' 4.14 4.17 4.15 
5.0 x lo3 64 x 64 3.29 x -4.97 x lo-' 3.58 x lo-' 4.51 4.51 4.40 
6.0 x lo3 64 x 64 3.00 x -4.05 x lo-' 3.39 x lo-' 4.63 4.68 4.64 
8.0 x lo3 64 x 64 2.61 x -3.28 x lo-' 3.12 x lo-' 5.00 5.07 5.02 

10.0 x lo3 74 x 74 2.46 x -3.35 x lo-' 2.95 x lo-' 5.46 5.45 5.33 
14.0 x lo3 74 x 74 2.49 x -3.79 x lo-' 2.73 x lo-' 6.01 5.98 5.86 
20.0 x lo3 74 x 74 2.42 x -3.94 x 2.48 x lo-' 6.66 6.61 6.50 
30.0 x lo3 74 x 74 2.26 x -3.66 x lo-' 2.22 x lo-' 7.45 7.40 7.30 
40.0 x loa 74 x 74 2.12 x -3.42 x lo-' 2.12 x lo-' 8.06 8.01 7.92 
50.0 x lo3 74 x 74 2.02 x -3.22 x lo-' 1.93 x 8.56 8.52 8.44 
60.0 x lo3 74 x 74 1.93 x -3.07 x lo-' 1.84 x lo-' 8.98 8.96 8.88 
70.0 x lo3 74 x 74 1.85 x -2.94 x lo-' 1.77 x lo-' 9.35 9.34 9.28 

TABLE 2. Characteristic quantities of some solutions a t  G = 1 and G = 10. 

cavity, w,, ,~ is the vorticity a t  the location of the minimum stream function, and Nu 
is the Nusselt number, the dimensionless heat flux across the cavity, calculated as 

Nu(x)  = (Ma uT- T!)  dy. 1: 
This quantity, computed at x = 0 and a t  2 = 1, shows an agreement generally better 
than 2 YO. 

4. Results 
We first examine the behaviour of combined flow a t  G = 1. Our anticipated result 

here is that the influence of buoyancy will represent only a perturbation to the flow 
driven by thermocapillarity ; this expectation is realized in the dependence of the 
minimum stream function on Reynolds number, shown in fi ure 2. The lower curve 
in this figure, the result for G = 0, shows the expected Re-s dependence to within 
about 5%. At large Reynolds number, the difference between the two curves 
essentially vanishes; near Re = 5 x lo4, the minimum stream function of the G = 1 
solution is proportional to Re-0.31, and is equal to the G = 0 value to within two 
significant figures. 

The structural features of the large-Reynolds-number flow and temperature fields 
a t  G = 1 also correspond closely with the G = 0 solutions. Figure 3 shows the stream 
function and temperature contours a t  Re = 3.5 x lo4 for G = 0 and G = 1. In  both of 
these solutions, the qualitative features associated with the establishment of the 
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FIGURE 2. Scaling behaviour of the minimum stream function with Reynolds number. 

closed streamline, constant-vorticity core region of large-Reynolds-number thermo- 
capillary flow are apparent. A secondary vortex is present in the lower right 
corner of the cavity in the G = 1 solution, clearly an effect of the adverse pressure 
gradient created by the core flow on the lower part of the cold wall. Buoyancy retains 
some influence locally, as evidenced by the suppression of separation on the bottom 
wall near the hot boundary. The third region of separated flow, in the upper left 
corner, is not yet developed a t  this Reynolds number in either the G = 0 or the 
G = 1 solution. The temperature distribution a t  G = 1 also differs little from the pure 
thermocapillary result. Temperature gradients are confined to the boundaries of the 
cavity; the core region is nearly isothermal, as is appropriate for convection- 
dominated transport in a region of closed streamlines. 

The instance G = 10 (or B = 0.1, in the scaling of (lo)-( 13)) describes a situation in 
which the buoyancy-driven flow, if considered independent of thermocapillarity, 
should begin to display boundary-layer characteristics at Re = Gr/G - 1 x lo3, when 
8, -+J. If, however, the scaling analysis of the combined buoyancy and 
thermocapillary problem presented in the previous section is valid, we might expect 
the flow to show significant departure from the pattern of buoyancy-driven 
convection a t  Re x 1 x lo3, since G d  x E .  

Our numerical solutions at a value of G equal to 10 show that, with regard to the 
scaling behaviour of the minimum stream function, the flow is dominated by 
buoyancy to a Reynolds number of approximately 1 x lo4. Near this value i t  
undergoes the abrupt change of character seen in figure 4. In  figure 4, the upper curve 
is the minimum stream function for G = 0. In  a range from Re = 4 x lo3 to Re = 
8 x lo3, the minimum stream function is proportional to Re-0.51, in close agreement 
with the prediction of classical buoyancy-driven boundary-layer theory. Beyond 
Re = 1 x lo4, the flow enters a brief transitional regime in which Ymin is nearly 
independent ofRe, and then begins to approach the G = 0 scaling. Near Re = 6 x lo4, 
Ymin - Re-0.30. It is interesting to note that though buoyancy and thermocapillarity 
both act to produce a clockwise circulation in the cavity, their effects are not additive 
and, a t  the Reynolds numbers we have examined, the combined flow is significantly 
weaker than the pure thermocapillary flow. This can be attributed to the influence 
of buoyant convection on the free-surface temperature gradient, which, as can be 
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FIGURE 3 Stream function and temperature contours for G = 0 and G = 1 solutions at Re = 
3 5 x  lo4 (a )  stream function, G = 0 ;  ( b )  stream function, G = 1 ,  (c) temperature, G = 0 ;  
( d )  temperature, G = 1. 

seen in figure 5, is somewhat smaller over the central region of the free surface (away 
from the boundaries) a t  G = 10 than a t  G = 0, for Re = 1 x lo4. The surface 
temperature gradient a t  x = 0.5 on these curves has a value of -0.34 for G = 0;  a t  
G = 10 the gradient diminishes to -0.24. The fact that the dimensionless 
temperature gradient over the central region of the free surface a t  large Reynolds 
number is actually approximately -0.24, not the value of - 1 assumed in the scaling 
arguments of the previous section, explains why the transition to thermocapillary 
dominance appears slightly later than the scaling analysis predicts - the effective 
thermocapillary stress is only one quarter of the assumed value over the dynamically 
significant portion of the free surface. 

The evolution toward thermocapillary patterns on increasing Re can also be seen 
qualitatively in the contours presented in figure 6 ,  which presents solutions at Re = 
5 x lo3 and a t  Re = 7 x lo4. Near Re = 5 x lo3, in the interval over which the 
minimum stream function scales close to the prediction of the buoyancy theory, the 
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FIGURE 4. Scaling behaviour of the minimum stream function with Reynolds number for G = 
10 and G = 0. 
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FIGURE 5. Surface temperature distributions at Re = lo4 for G = 10 and G = 0. 

streamlines and temperature contours of the core region show horizontal strati- 
fication in correspondence with the theoretical description of Gill. At Re = 7 x lo4, 
the core patterns are distinctly thermocapillary in origin, with a nearly isothermal 
temperature distribution and the circular streamlines of a constant-vorticity core 
flow. The influence of buoyancy a t  Re = 7 x lo4 is principally manifested in the 
suppression of the secondary vortices in the lower corners of the cavity. Buoyancy 
provides an acceleration to the flow in the vicinity of the cold wall which counteracts 
the adverse pressure gradient represented by the decelerating core flow, and so 
stabilizes the boundary layer on the lower half of the cold wall. Buoyancy cannot act 
similarly on the lower horizontal boundary, and a small region of separated flow 
therefore appears. Buoyant acceleration prevents the separating streamline from 
reattaching on the hot wall. These effects are Reynolds-number-dependent, and we 
would expect the flow to acquire a structure completely analogous to the pure 
thermocapillary problem at sufficiently large Reynolds number. 
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1 

FIGURE 6. Stream function and temperature contours for G = 10. Re = 5 x loa: (a) stream 
function, (6)  temperature. Re = 7 x lo4: (c) stream function, ( d )  temperature. 

5. Discussion 
This paper is a limited investigation of combined thermocapillary and buoyancy- 

driven flow. The combined flow problem will have a parametric dependence on many 
factors about which it is impossible to draw quantitative conclusions, but some 
qualitative extensions are possible. We have seen how thermocapillarity eventually 
dominates the flow at sufficiently large Reynolds number for Pr = I, G = 1 or 10, and 
how this can be explained by the weaker Reynolds-number-dependence of 
thermocapillary flows, which are O(I2e-i) at high Reynolds number, while buoyancy- 
driven flow is O(Re-i). Our explanation implies that thermocapillarity will dominate 
the flow a t  any fixed value of G or Pr, if the Reynolds number is large enough, as the 
scaling dependencies remain asymptotically valid. The same conclusion, surprisingly, 
would be true of the cavity aspect ratio: no matter how small the area of the free 
surface, the flow field in the core of the cavity must be O(Re-i) a t  asymptotically large 
Reynolds numbers. 
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